1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Каталитическая нейтрализация автомобильных выбросов

Содержание

Каталитическая нейтрализация отработавших газов

Каталитическое действие нейтрализаторов основано на беспламенном поверхностном окислении токсичных веществ в присутствии катализатора, ускоряющего химическую реакцию. Процесс окисления происходит во время прохождения отработавших газов через слой носителя с нанесенным на него катализатором, причем скорость реакции сгорания зависит oт температуры носителя. Применение каталитических нейтрализаторов позволяет дожигать продукты неполного сгорания СН и СО и разлагать оксиды азота.

В качестве активных компонентов каталитических нейтрализаторов для СИ и СО применяют благородные металлы (до 1-2 г палладия, платины) а также оксиды переходных металлов (меди, кобальта, никеля, ванадия, хромата железа, марганца). Для нейтрализации могут применяться, кроме выше названных элементов, катализаторы на основе меди с добавкой ванадиевого ангидрида и оксида хрома, на основе оксида железа или алюминия, на основе металлических сплавов (нержавеющая сталь, бронза, латунь, легированные стали с хромоникелем).

Общая схема системы очистки отработавших газов бензинового двигателя показана на рисунке:

Рис. Общая схема системы очистки отработавших газов бензинового двигателя

В систему очистки отработавших газов современного двигателя входят:

  • трехкомпонентный каталитический нейтрализатор 1
  • входной 2 и выходной 9 датчики кислорода (лямда зонды)
  • блок управления двигателем 3
  • кабель шины CAN 4
  • блок управления датчиком NOx 5
  • датчик (датчики) оксидов азота NOx 6
  • накопительный нейтрализатор NOx 7
  • датчик температуры 8
  • датчик кислорода 9
  • двигатель 10

Каталитический нейтрализатор представляет собой металлический корпус 6 из жаропрочной нержавеющей стали толщиной около 1,5 мм, внутри которого находится керамический носитель 5. Наибольшее распространение получили гранулированные и блочные (монолитные) носители, которые пронизаны многочисленными мелкими сотами, созда­ющими максимальную поверхность контакта с отработавшими газами. Чтобы обеспечить необходимый массоперенос между отработавшими газами и каталитической поверхностью, площадь последней увеличивают путем нанесения на нее гамма-оксида алюминия с пористой структурой, в виде сферических гранул, которые укладываются в металлический цилиндр 2, закрытый по торцам сетками. Гранулы из оксида алюминия покрываются непосредственно каталитическим материалом. Поверх фольги или гранул алюминия нанесен тонкий слой катализаторов – платины и родия. Задача этих редких металлов – ускорять окисление углеводородов и окиси углерода до угле­кислого газа, а токсичные оксиды азота восстанавливать до азота. Между блоком-носителем и корпусом ставится специальная терморасширяющаяся прокладка.

Рис. Каталитический трехкомпонентный нейтрализатор отработавших газов:
1 – кислородный датчик; 2 –цилиндр; 3 – терморасширительная прокладка; 4 – катализатор; 5 – керамический носитель; 6 – металлический корпус

Недостатком нейтрализаторов является их достаточно большая стоимость из-за применения дорогостоящих редких металлов. В целях их экономии в конструкции нейтрализаторов начали применять нано технологии. Исследования фирмы «Мазда» показали, что частицы редких металлов крупнее 10 нм, напыленные на керамическую основу, дер­жатся на ней не слишком проч­но. При нагреве они начинают скользить по поверхности керамических зерен и сливаются, подобно капелькам ртути в агломераты все боль­ших размеров. При этом неиз­бежно уменьшается площадь поверхности, контактирующая с газами, и эффективность их обезвреживания падает. Однако, если уменьшить размер частиц металла до 5 нм и менее, они прочно застревают в нанопорах керамики и уже не могут срываются. Кроме того, применяя наночастицы пла­тины, удалось уменьшить ее общее количество в нейтрали­заторе на 70…90%.

Альтернативой керамическому моно­литному блоку является металлический каталитический нейтрализатор. Он из­готавливается из гофрированной ме­таллической фольги толщиной 0,05 мм, намотка и пайка которой твердым при­поем осуществляется при высокой тем­пературе. Поверхность фольги покры­вается эффективно действующим ката­лизатором. Благодаря тонким стенкам фольги в тех же габаритах, что и у кера­мического нейтрализатора, может быть размещено большее число каналов. Это приводит к меньшему сопротивлению прохождения отработавших газов.

Нейтрализатор вступает в работу после разогрева до 300°С. Оптимальный рабочий диапазон температур от 400 до 800°С. Чем ближе нейтрализатор к двигателю, тем быстрее разогревается до рабочей темпе­ратуры. Поэтому на смену нейтрализаторам под днищем кузова пришли нейтрализаторы, совмещен­ные с приемной трубой.

В целях уменьшения вибрационных нагрузок со стороны двигателя нейтрализатор присоединяется к выпускному трубопроводу или к приемной трубе через шарнирное соединение или через компенсатор колебаний.

Для работы системы с каталитическим окислительным нейтрализатором при использовании в двигателе обогащенных смесей необходимо к отработавшим газам добавлять воздух. Для этого используются специальные воздушные насосы ими специальные клапанные устройства (виброклапаны или пульсаторы), функционирующие под действием волн разрежения, возникающих в системе выпуска.

Наилучшую очистку отработавших газов дают двухсекционные катали­тические нейтрализаторы, позволяющие после прохождения первой секции уменьшать содержание NOx, а после ввода во вторую секцию дополнительного воздуха – содержание СО и СН.

В последнее время наибольшее распространение нашли трехкомпонентные каталитические нейтрализаторы, оборудованные системой обратной связи, позволяющие одновременно при восстановлении NOx окис­лять СО и СН.

Устройство и принцип работы каталитического нейтрализатора

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название «каталитический нейтрализатор» (более известный как «катализатор»). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции каталитического нейтрализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализатор состоит из:

  • Металлический корпус (монтажный мат), имеющий входной и выходной патрубки.
  • Керамический блок (монолит). Представляет собой пористую структуру с множеством ячеек, которые увеличивают площадь соприкосновения выхлопных газов с рабочей поверхностью.
  • Каталитический слой — специальное напыление на поверхностях ячеек керамического блока, состоящее из платины, палладия и родия. В последних моделях для напыления иногда используется золото — драгоценный металл, который имеет более низкую стоимость.
  • Металлический кожух. Выполняет функции теплоизоляции и защиты катализатора от механических повреждений.
Читать еще:  Накладки на пороги ваз 2114 установка

Главная функция каталитического нейтрализатора — это нейтрализация трех основных токсических компонентов отработавших газов, поэтому он получил свое название — трехкомпонентный. Вот эти нейтрализуемые компоненты:

  • Окислы азота NOx – компонент смога, причина кислотных дождей, ядовиты для человека.
  • Угарный газ СО – смертельно опасен для человека при концентрации в воздухе от 0,1%.
  • Углеводороды CH – компонент смога, отдельные соединения канцерогены.

Принцип действия катализатора

На практике трехкомпонентный каталитический нейтрализатор имеет следующий принцип действия:

  • Выхлопные газы из двигателя попадают внутрь керамических блоков, где проникают в ячейки, полностью заполняя их.
  • Металлы-катализаторы палладий и платина провоцируют реакцию окисления, в результате которой несгоревшие углеводороды СН преобразуются в водяной пар, а угарный газ СО в углекислый.
  • Восстановительный металл-катализатор родий преобразует NOx (оксид азота) в обычный безвредный азот.
  • В атмосферу выпускаются очищенные отработавшие газы.

Если в автомобиле установлен дизельный двигатель, то возле катализатора всегда находится сажевый фильтр. Иногда эти два элемента могут быть совмещены в единую конструкцию.

Рабочая температура катализатора играет решающую роль в эффективности процесса нейтрализации токсичных компонентов. Реальное преобразование начинается только после достижения 300°С. Идеальной, с точки зрения эффективности и срока службы, считается температура от 400 до 800°С. В диапазоне температур от 800 до 1000°С наблюдается ускоренное старение нейтрализатора. Длительная работа при температуре свыше 1000°С оказывает губительное воздействие на катализатор. Альтернативой керамике, выдерживающей высокие температуры, является металлическая матрица из гофрированной фольги. Катализаторами в такой конструкции выступают платина и палладий.

Срок службы катализатора

Средний ресурс катализатора составляет 100 тыс. километров пробега, но при правильной эксплуатации он может исправно функционировать и до 200 тыс. километров. Основные причины раннего износа — неисправность двигателя и качество топлива (топливовоздушной смеси). При наличии обедненной смеси происходит перегрев, а при слишком богатой возникает засорение пористого блока остатками несгоревшего топлива, что препятствует протеканию необходимых химических процессов. Это приводит к тому, что срок службы каталитического нейтрализатора существенно снижается.

Еще одной распространенной причиной неисправности керамического катализатора являются механические повреждения (трещины), возникающие при механических воздействиях. Они провоцируют быстрое разрушение блоков.

При возникновении неисправностей работа каталитического нейтрализатора ухудшается, что фиксируется при помощи второго лямбда-зонда. В этом случае электронный блок управления сообщит о неисправности, выдав на приборной панели ошибку «CHECK ENGINE». Также признаками выхода из строя являются дребезжание, увеличение расхода топлива и ухудшение динамики. В этом случае его меняют на новый (оригинального производства или универсальный). Почистить или восстановить катализаторы невозможно, а поскольку это устройство имеет высокую цену, многие автомобилисты предпочитают просто удалить его.

Можно ли удалить катализатор

При удалении катализатора его очень часто заменяют на пламегаситель. Последний выравнивает поток выхлопных газов. Его установка рекомендуется для устранения неприятных шумов, которые возникают при удалении катализатора. При этом, если вы выбрали именно удаление, лучше полностью снять устройство и не прибегать к рекомендациям некоторых автомобилистов пробить в нем отверстие. Подобная процедура улучшит ситуацию только на время.

В автомобилях, соответствующих экологическим стандартам Евро-3, помимо удаления катализатора необходима перепрошивка электронного блока управления. Ее обновляют до версии, в которой отсутствует каталитический нейтрализатор. Также можно установить эмулятор сигнала кислородного датчика, который избавит от необходимости перепрошивать ЭБУ.

Наилучшим решением при поломке каталитического нейтрализатора будет его замена на оригинальную деталь в специализированном сервисе. Таким образом будет исключено вмешательство в конструкцию автомобиля, а его экологический класс будет соответствовать заявленному производителем.

Автомобильный справочник

для настоящих автомобилистов

Каталитический нейтрализатор отработавших газов

Законодательство в области ограничения ток­сичности отработавших газов устанавливает пре­делы содержания в них токсичных веществ. Для выполнения этих требований меры, связанные с совершенствованием конструкции двигателей, оказываются недостаточными. В дополнение к снижению количества неочищенных выбросов большое внимание уделяется каталитической очистке отработавших газов, с целью преоб­разования токсичных веществ. Вот о том как происходит каталитическая очистка отработавших газов, мы и поговорим в этой статье.

Каталитические нейтрализаторы преобразуют загрязняющие вещества, образующиеся в процессе сгорания топлива, в безвредные компоненты.

Трехкомпонентный каталитический нейтрализатор отработавших газов

Современные технологии очистки отрабо­тавших газов для двигателей, работающих при стехиометрическом составе смеси, пред­ставляет трехкомпонентный каталитический нейтрализатор. Его задачей является преоб­разование токсичных веществ — НС (углеводо­родов), СО (оксида углерода) и NOх (оксидов азота), образующихся в процессе сгорания топлива, в безвредные составляющие. Ко­нечными продуктами являются Н2О (водяной пар), С02 (диоксид углерода) и N2 (азот).

Конструкция и принцип действия каталитического нейтрализатора

Каталитический нейтрализатор состоит из кон­тейнера из листовой стали, подложки, покрытия из пористого оксида и активного каталитиче­ского металлического покрытия. Подложка обычно представляет собой керамический монолит, хотя для специальных применений также используются металлические монолиты. На монолит наносится слой подложки, который увеличивает эффективную площадь каталити­ческого нейтрализатора примерно в 7000 раз. Каталитический слой поверх подложки содер­жит благородные металлы, такие как платина или палладий и родий. Платина и палладий уско­ряют окисление НС и СО, в то время как родий несет ответственность за восстановление NО.

Окисление СО и НС происходит в соответ­ствии со следующими реакциями:

2 С2Н6 + 7 O2 —> 4 С02 + 6 Н2O

Восстановление оксидов азота происходит в соответствии со следующей реакцией:

2 NO + 2 СО — N2 + 2 СO2

Кислород, требующийся для процесса окисле­ния, либо присутствует в отработавших газах (в результате неполного сгорания топлива), либо забирается из оксидов азота NОX, кото­рые в то же время восстанавливаются.

Концентрация токсичных веществ в отрабо­тавших газах (перед каталитическим нейтра­лизатором) зависит от коэффициента избытка воздуха λ (см. рис. а, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). Для как можно более полного преобразования трехкомпонентным каталитическим нейтрализатором всех трех ток­сичных составляющих требуется стехиометриче­ский состав топливно-воздушной смеси (λ = 1, см. рис. Ь, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ). При λ = 1 имеет место состояние равновесия между реакциями окисления и вос­становления, что способствует полному окисле­нию НС и СО с одновременным восстановлением NО, При этом НС и СО действуют в качестве восстановителей для NO. «Окно» (диапазон регулирования λ), в пределах которого должно находиться среднее значение λ, очень невелико Отсюда следует, что смесеобразование должно корректироваться с использованием замкнутой системы регулирования λ с применением в ка­честве устройства, вырабатывающего сигнал об­ратной связи, кислородного датчика λ (см. рис. с, «Эффективность каталитического нейтрализатора в функции коэффициента избытка воздуха λ» ) (см. «Регулирование λ»).

Читать еще:  Почему дергается автомобиль при движении

Каталитический нейтрализатор кислород­ного типа

Точность регулирования λ в динамическом диапазоне, как правило, составляет 5 %, т.е. отклонения от значения λ = 1 являются не­избежными. Каталитический нейтрализатор способен сам компенсировать небольшие колебания состава смеси. Он обладает спо­собностью запасать избыточный кислород во время работы двигателя на бедной смеси и освобождать его при обогащении смеси. Слой подложки содержит цероксид, который может запасать и освобождать кислород в соответ­ствии со следующей обратимой реакцией:

Се2Оз + О2 4 СеO2

Следовательно, задача системы управления двигателем представляется вполне ясной. Усредненное по времени значение λ перед ката­литическим нейтрализатором должно поддер­живаться очень точно (допустимое отклонение составляет несколько тысячных долей). Откло­нения, переведенные в количество запасаемого и освобождаемого кислорода, не должны пре­вышать количества кислорода, которое может удерживать каталитический нейтрализатор. Типичные значения этого количества лежат в диапазоне от 100 мг до 1 г; в процессе старения каталитического нейтрализатора эти значения Уменьшаются. Все обычные методы диагно­стики каталитического нейтрализатора осно­ваны на прямом или косвенном определении его способности к накоплению кислорода.

При нормальной рабочей температуре каталитического нейтрализатора степень преобразования ограниченного количества токсичных веществ достигает 99%.

Каталитический нейтрализатор NOx аккуму­ляторного типа

Во время работы двигателя на бедной смеси трехкомпонентный каталитический нейтрализатор не способен преобразовывать оксиды азота, произведенные в процессе сгорания то­плива. СО и НС окисляются остаточным кисло­родом, содержащимся в отработавших газах, и, следовательно, не могут служить в качестве восстановителей оксидов азота.

Каталитический слой каталитического ней­трализатора NОx, аккумуляторного типа со­держит вещества, способные накапливать NОx, например, оксид бария. Все обычные покры­тия, накапливающие NОx, также обладают свой­ствами трехкомпонентного каталитического нейтрализатора, в результате чего каталитиче­ский нейтрализатор NОx аккумуляторного типа при λ = 1 работает таким же образом, как трех­компонентный каталитический нейтрализатор.

При работе двигателя на бедной смеси в режиме послойного распределения заряда NОx преобразуются в три этапа. Вовремя накопле­ния NОx сначала окисляются до диоксида азота NO2, который затем реагирует со специальными оксидами на поверхности каталитического ней­трализатора и кислородом (O2) с образованием нитратов, например, нитрата бария.

По мере того как количество накопленных NОx (нагрузка) возрастает, способность ней­трализатора связывать NОx понижается. При определенной нагрузке аккумулятор NОx должен быть регенерирован, т.е. связанные в нем оксиды азота должны быть снова освобождены и пре­образованы. С этой целью двигатель кратковре­менно переводится в режим работы на богатой однородной смеси (λ 1), например, во время прогрева каталитического нейтрализатора.

Система регулирования λ с использованием двух кислородных датчиков

Когда кислородный датчик находится перед каталитическим нейтрализатором, он испы­тывает высокие тепловые нагрузки и под­вергается воздействию необработанных от­работавших газов, что ограничивает точность измерения. Изменения состава отработавших тазов могут вызывать сдвиг точки скачка вы­ходного напряжения двухступенчатого кис­лородного датчика или характеристической кривой широкополосного кислородного датчика. Кислородный датчик, расположен­ный после каталитического нейтрализатора, подвергается этим воздействиям в значи­тельно меньшей степени. Однако, система регулирования λ с использованием только кислородного датчика, расположенного поcле каталитического нейтрализатора, демон­стрирует ухудшение динамической характе­ристики, обусловленное конечным временем прохождения газов, и замедленной реакцией на изменения состава смеси.

Более высокая точность может быть достиг­нута в системе, включающей два датчика. Здесь контур двухступенчатого или непре­рывного регулирования λ дополняется более медленным корректирующим контуром, со­держащим дополнительный двухступенчатый кислородный датчик (см. рис. а, «Места установки кислородных датчиков» ). С этой це­лью выходное напряжения двухступенчатого кислородного датчика после каталитического нейтрализатора сравнивается со значением установки (например, 600 мВ). В зависимости от величины отклонения, система регулиро­вания соответствующим образом ступенчато изменяет установку состава смеси в сторону обогащения или обеднения для первого кон­тура регулирования, или значение установки для контура непрерывного регулирования.

Система регулирования λ с использованием трех кислородных датчиков

Установка третьего кислородного датчика по­сле главного каталитического нейтрализатора рекомендуется для облегчения диагностики каталитических нейтрализаторов и обеспечения повышенной стабильности состава отработав­ших газов для автомобилей категории SULEV (Автомобили со сверхнизким выбросом вредных веществ). Система регулирования с двумя кисло­родными датчиками (первый каскад) дополнена контуром регулирования с очень низким быстро­действием с использованием третьего кислород­ного датчика, установленного после главного каталитического нейтрализатора (см. рис. Ь, «Места установки кислородных датчиков» ).

Поскольку требования, предъявляемые к ка­тегории SULEV, относятся к величине пробега 150 000 миль, старение первичного каталити­ческого нейтрализатора может привести к сни­жению точности измерения двухступенчатого кислородного датчика после первичного катали­тического нейтрализатора. Этот эффект компен­сируется посредством установки дополнитель­ного двухступенчатого кислородного датчика после главного каталитического нейтрализатора.

Каталитическая очистка газовых выбросов: методы и технологии

Каталитическая очистка газовых выбросов, неизбежно сопровождающих многие производственные процессы, является одним наиболее эффективных методов химического обезвреживания содержащихся в них вредных веществ. Суть каталитических методов очистки газовых выбросов заключается в реализации химических взаимодействий, приводящих к конверсии подлежащих обезвреживанию вредных веществ в другие, без- или маловредные, в присутствии специальных катализаторов.

К числу загрязняющих атмосферный воздух вредных веществ относятся не только многочисленные летучие органические соединения (ЛОС) образующиеся в процессе функционирования различных промышленных производств, например, химических и нефтехимических, но и дурнопахнущие, выделяемые, например городскими очистными сооружениями, а также загрязняющие вещества, входящие в состав газовых выбросов, производимых промышленным оборудованием, работающим на двигателях внутреннего сгорания.

На законодательном уровне утверждены нормы, призванные обеспечить уменьшение выбросов вредных веществ в атмосферный воздух.

Решения для промышленности: каталитические методы очистки газовых выбросов

Известно несколько разновидностей каталитических методов очистки, отличающихся по механизму, природе используемых катализаторов и применяемых в зависимости от типа преобладающего вредного вещества в газовых выбросах производства: пиролюзитный, озонокаталитический, жидкостно-контактный и радикально-каталитический.

Для снижения выбросов в атмосферу вредных веществ, содержащихся в промышленных выбросах, например, металлургических производств, а это в основном NOx, могут быть использованы как первичные, так и вторичные меры.

Первичные меры направлены на предотвращение образования вредных веществ на этапе подготовки производства (использование новых современных технологий, переход на альтернативные расходные материалы и энергоносители), они достаточно эффективны, но весьма затратны.

Вторичные меры включает удаление вредных веществ путем очистки газовых выбросов, образующихся на различных стадиях производства. Использование этих мер не требует каких-либо структурных изменений и не влияет на ход принятого технологического процесса производства продукции.

При выборе подходящих мер, как правило обращают внимание на экологический и экономический аспект, то есть, будут ли инвестиционные затраты, связанные с сокращением выбросов вредных веществ, адекватны прибыли от производства. На рынке представлен широкий спектр оборудования, реализующего различные методы каталитической очистки газовых выбросов, которые позволяют эффективно уменьшить концентрацию выбрасываемых вредных веществ.

Читать еще:  Установка генератора ваз на газ 3110

В зависимости от объема производства и финансовых возможностей компании предприниматель должен решить, может ли он использовать вторичные меры – каталитические методы очистки газовых выбросов, или использовать первичные меры, при которых он будет использовать возобновляемые энергоресурсы и не столкнется с проблемой управления отходами.

Для минимизации концентрации вредных веществ в газовых выбросах могут быть использованы различные химические реакции, такие как абсорбция и адсорбция, а также каталитическое восстановление и каталитическое окисление.

Промышленные каталитические нейтрализаторы

Каталитический нейтрализатор, представляющий собой систему очистки отработавших газов, установленный на генераторной станции, специальной технике обеспечивает степень очистки отработавших газов ДВС:

  • по оксиду углерода (CO) – 90-97%;
  • по углеводородам (CH) – 85-95%;
  • по оксидам азота (NOx) – 65-95%;
  • по содержанию твердых частиц (саже, РМ) – 85-95%.

Система очистки отработавших (выхлопных) газов может состоять из трех последовательных ступеней, в зависимости от требований производства:

Сажевый фильтр.

Мелкие частицы сажи, образующиеся в двигателе внутреннего сгорания, могут оказывать канцерогенное действие, если они прикрепляются к легочной ткани. Волокнистый сажевый фильтр может фильтровать мелкие частицы отработавших газов. Частицы сгорают при рабочей температуре внутри системы на пропитанной катализатором поверхности волокна.

Сажа, осаждаемая на фильтре, состоит в основном из частиц углерода (C) и углеводородов. Существует два основных метода удаления частиц:

1. сгорание с кислородом (O2): [C] + O2 → CO 2 2. сгорание с диоксидом азота (NO2): [C] + NO2 → CO2 + NO

Характеристики двух разных методов отражены в таблице:

Регенерация на основе O2 Регенерация на основе NO2 Температура, необходимая для регенерации Требуется температура около 600 °C (или 400 °C с топливным катализатором). Реакция происходит от 250 °С. Используемый газ O2 в потоке выхлопных газов. NO2 должен быть воспроизведен из NO в потоке выхлопных газов.

Оборудование для селективного каталитического восстановления оксидов азота (NOx).

Этот процесс используется для уменьшения оксидов азота, образующихся во время процесса сгорания углеводородного топлива, сопровождающегося выделением энергии. NO (оксид азота) представляет собой бесцветный газ, который окисляется в воздухе с образованием NO2 (диоксид азота). В высоких концентратах он вызывает симптомы паралича нервной системы. NO2 — красно-коричневый газ с резким запахом. Под воздействием солнечного света и углеводородами, образует смог. Оксиды азота восстанавливаются в кислородсодержащих выхлопных газах с помощью процесса SCR (Selective Catalytic Reduction, селективное/выборочное каталитическое восстановление). Отработавший газ, обработанный дозированным реагентом мочевины, проходит через тонкостенные сотовые преобразователи, восстанавливая оксиды до воды и азота. Процесс с мочевиной – выгодная альтернатива аммиаку в качестве реагента для снижения уровня отравляющих веществ в выхлопных газах двигателя. По сравнению с аналогом реагент обладает значительными преимуществами в отношении транспортировки, хранения и обработки, при этом она значительно дешевле.

Оборудование для каталитического окисления СО и несгоревших углеводородов.

Этот процесс используется для снижения уровня окиси углерода и несгоревших углеводородов в выхлопных газах. Это достигается путем каталитического окисления. Такой катализатор может быть установлен после стадии SCR. Несгоревшие углеводороды могут быть обнаружены в выхлопных газах двигателей внутреннего сгорания. Такие выхлопные газы содержат различные вещества с различными свойствами:

Насыщенные углеводороды (парафины) практически не имеют запаха и могут оказывать слабое наркотическое действие.

Ненасыщенные углеводороды (олефины, ацетилены) – одна из составляющих городского смога.

Ароматические углеводороды представляют собой нервно-паралитические яды с наркотическим эффектом, а некоторые служат канцерогенными альдегидами с резким запахом и даже в низких концентрациях сильно раздражают слизистые глаз и носа.

Системы очистки выхлопных газов могут быть установлены как на стационарном, так и на мобильном оборудовании на первичных двигателях внутреннего сгорания, работающих на газе и жидком топливе.

Реверсивный метод каталитической очистки газа

Среди каталитического дожигания можно выделить реверсивный метод каталитической очистки газа, который благодаря низкому энергопотреблению особенно подходит для очистки газов от органических загрязнителей, выбрасываемых промышленностью в атмосферу. Установки обратного типа изготавливаются в соответствии с типовой серией с диапазоном производительности от 300 до 15 000 м3/ч для концентраций органических соединений от нескольких сотен мг до нескольких грамм на м3.

Эффективность очистки зависит от типа загрязнения и составляет до 98%. При концентрациях органических соединений выше 0,7 г/м3 установка работает автотермически (без затрат энергии для нагрева реактора). Побочные продукты – азот и вода нейтральны для окружающей среды. Способ более экономичен, чем термическое сгорание, так как работает при более низких температурах. Недостаток – высокие затраты на внедрения по причине стоимости каталитически активных металлов.

Особенности эксплуатации каталитических нейтрализаторов

Каталитический нейтрализатор использует каталитическое химическое преобразование для преобразования оксида углерода (CO) и несгоревших углеводородов (CH) в нетоксичный диоксид углерода и воду. Это преобразование осуществляется на металлической сотовой подложке, покрытой активным каталитическим материалом. Катализатор способен обеспечить степень очистки загрязняющих веществ – до 90% при оптимальной рабочей температуре от 250°C.

  • Сфера применения.
    Катализатор подходит для любых дизельных двигателей, использующихся на такой технике, как генераторные агрегаты с первичной мощностью или резервные генераторы, землеройное и погрузочно-разгрузочное оборудование (спецтехника, погрузчики). В частности, катализаторные установки применяют для оснащения техники, используемой в ограниченном пространстве, таком как туннели, склады и шахты.
  • Установка.
    Важно монтировать узел как можно ближе к выпускному коллектору двигателя. Для обеспечения максимальной каталитической эффективности катализатора требуется достаточно высокая температура.
  • Срок эксплуатации.
    В основе работы каталитического нейтрализатора лежит осуществление каталитической реакции, следовательно, срок службы катализатора теоретически не ограничен. Узел может выйти из строя в результате ошибок при эксплуатации (повышенная вибрация двигателя, погрешности монтажа, абразивное воздействие выхлопных газов).

Решения от ЭКОЭНЕРГОТЕХ

Компания «ЭКОЭНЕРГОТЕХ» стремится привлечь внимание к проблеме попадания в атмосферу в составе промышленных газов вредных веществ, таких как угарный газ, NOx, SOx, твердые частицы и углеводороды. В соответствии с требованиями законодательства владельцы предприятий будут вынуждены применять решения для сокращения выбросов. Это могут быть операции, как конструктивного характера, так и внедрение методов каталитической очистки. В каталоге предприятия вы найдете проекты различных установок позволяющих добиться снижения выбросов токсичных соединений и СО2 и адаптироваться к требованиям действующих экологических норм и условий. Мы поможем вам внедрить на производстве очистные системы в соответствии с представленными требованиями.

Другие статьи

Нововведения в природоохранном законодательстве: минимизация выбросов промышленных газов

В статье 18 Федерального конституционного закона от 17.12.1997 N 2-ФКЗ определены полномочия в сфере природопользования и охраны окружающей среды Правительства Российской Федерации, которое не только обеспечивает проведение единой государственной политики

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector